# /

# dict源码

# hiredis/dict
typedef struct dictEntry {
    void *key;
    void *val;
    struct dictEntry *next;
} dictEntry;

typedef struct dictType {
    unsigned int (*hashFunction)(const void *key);
    void *(*keyDup)(void *privdata, const void *key);
    void *(*valDup)(void *privdata, const void *obj);
    int (*keyCompare)(void *privdata, const void *key1, const void *key2);
    void (*keyDestructor)(void *privdata, void *key);
    void (*valDestructor)(void *privdata, void *obj);
} dictType;

typedef struct dict {
    dictEntry **table;
    dictType *type;
    unsigned long size;
    unsigned long sizemask;
    unsigned long used;
    void *privdata;
} dict;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# dictFind
static dictEntry *dictFind(dict *ht, const void *key) {
    dictEntry *he;
    unsigned int h;

    if (ht->size == 0) return NULL;
    h = dictHashKey(ht, key) & ht->sizemask;
    he = ht->table[h];
    while(he) {
        if (dictCompareHashKeys(ht, key, he->key))
            return he;
        he = he->next;
    }
    return NULL;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# dictAdd
/* Add an element to the target hash table */
static int dictAdd(dict *ht, void *key, void *val) {
    int index;
    dictEntry *entry;

    /* Get the index of the new element, or -1 if
     * the element already exists. */
    if ((index = _dictKeyIndex(ht, key)) == -1)
        return DICT_ERR;

    /* Allocates the memory and stores key */
    entry = hi_malloc(sizeof(*entry));
    if (entry == NULL)
        return DICT_ERR;

    entry->next = ht->table[index];
    ht->table[index] = entry;

    /* Set the hash entry fields. */
    dictSetHashKey(ht, entry, key);
    dictSetHashVal(ht, entry, val);
    ht->used++;
    return DICT_OK;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
/* Returns the index of a free slot that can be populated with
 * an hash entry for the given 'key'.
 * If the key already exists, -1 is returned. */
static int _dictKeyIndex(dict *ht, const void *key) {
    unsigned int h;
    dictEntry *he;

    /* Expand the hashtable if needed */
    if (_dictExpandIfNeeded(ht) == DICT_ERR)
        return -1;
    /* Compute the key hash value */
    h = dictHashKey(ht, key) & ht->sizemask;
    /* Search if this slot does not already contain the given key */
    he = ht->table[h];
    while(he) {
        if (dictCompareHashKeys(ht, key, he->key))
            return -1;
        he = he->next;
    }
    return h;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# src/dict
typedef struct dictEntry {
    void *key;
    union {
        void *val;
        uint64_t u64;
        int64_t s64;
        double d;
    } v;
    struct dictEntry *next;
} dictEntry;

typedef struct dictType {
    uint64_t (*hashFunction)(const void *key);
    void *(*keyDup)(void *privdata, const void *key);
    void *(*valDup)(void *privdata, const void *obj);
    int (*keyCompare)(void *privdata, const void *key1, const void *key2);
    void (*keyDestructor)(void *privdata, void *key);
    void (*valDestructor)(void *privdata, void *obj);
    int (*expandAllowed)(size_t moreMem, double usedRatio);
} dictType;

/* This is our hash table structure. Every dictionary has two of this as we
 * implement incremental rehashing, for the old to the new table. */
typedef struct dictht {
    dictEntry **table;
    unsigned long size;
    unsigned long sizemask;
    unsigned long used;
} dictht;

typedef struct dict {
    dictType *type;
    void *privdata;
    dictht ht[2];
    long rehashidx; /* rehashing not in progress if rehashidx == -1 */
    int16_t pauserehash; /* If >0 rehashing is paused (<0 indicates coding error) */
} dict;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# dictFind
dictEntry *dictFind(dict *d, const void *key)
{
    dictEntry *he;
    uint64_t h, idx, table;

    if (dictSize(d) == 0) return NULL; /* dict is empty */
    if (dictIsRehashing(d)) _dictRehashStep(d);
    h = dictHashKey(d, key);
    for (table = 0; table <= 1; table++) {
        idx = h & d->ht[table].sizemask;
        he = d->ht[table].table[idx];
        while(he) {
            if (key==he->key || dictCompareKeys(d, key, he->key))
                return he;
            he = he->next;
        }
        if (!dictIsRehashing(d)) return NULL;
    }
    return NULL;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

注意:当没有在rehash时,查找一个key的值会从两个哈希表中获取。

# 渐进式重哈希

# 为什么不一次性重哈希?

字典中有两个哈希表,默认使用hashtable1存储。随着字典中的元素增加,字典需要扩容并重哈希。Redis并不是一次性完成冲哈希操作,而是采用渐进式重哈希。因为如果Redis中的key特别多,一次性重哈希将导致主进程长时间阻塞。

# 渐进式重哈希

渐进式重哈希的基本思路是:在rehash过程中,hashtable1依然可以使用。当客户端访问hashtable1时,把当前key转移(重新分配)到hashtable2;当客户端再次访问hashtable1时,重复这个操作,直到hashtable1都转移到hashtable2;释放hashtable1,hashtable2取代hashtable1。

int dictRehash(dict *d, int n) {
    int empty_visits = n*10; /* Max number of empty buckets to visit. */
    if (!dictIsRehashing(d)) return 0;

    while(n-- && d->ht[0].used != 0) {
        dictEntry *de, *nextde;

        /* Note that rehashidx can't overflow as we are sure there are more
         * elements because ht[0].used != 0 */
        assert(d->ht[0].size > (unsigned long)d->rehashidx);
        while(d->ht[0].table[d->rehashidx] == NULL) {
            d->rehashidx++;
            if (--empty_visits == 0) return 1;
        }
        de = d->ht[0].table[d->rehashidx];
        /* Move all the keys in this bucket from the old to the new hash HT */
        while(de) {
            uint64_t h;

            nextde = de->next;
            /* Get the index in the new hash table */
            h = dictHashKey(d, de->key) & d->ht[1].sizemask;
            de->next = d->ht[1].table[h];
            d->ht[1].table[h] = de;
            d->ht[0].used--;
            d->ht[1].used++;
            de = nextde;
        }
        d->ht[0].table[d->rehashidx] = NULL;
        d->rehashidx++;
    }

    /* Check if we already rehashed the whole table... */
    if (d->ht[0].used == 0) {
        zfree(d->ht[0].table);
        d->ht[0] = d->ht[1];     //hashtable2取代hashtable1
        _dictReset(&d->ht[1]);
        d->rehashidx = -1;
        return 0;
    }

    /* More to rehash... */
    return 1;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# dictScan

Redis是单线程的,在key很多的情况下,使用keys命令遍历整个数据库,将严重影响性能;可使用scan命令取代。

scan cursor [MATCH pattern] [COUNT count] [TYPE type]
1
unsigned long dictScan(dict *d,
                       unsigned long v,//这个参数为cursor
                       dictScanFunction *fn,
                       dictScanBucketFunction* bucketfn,
                       void *privdata)
{
    dictht *t0, *t1;
    const dictEntry *de, *next;
    unsigned long m0, m1;

    if (dictSize(d) == 0) return 0;

    /* This is needed in case the scan callback tries to do dictFind or alike. */
    dictPauseRehashing(d);

    if (!dictIsRehashing(d)) {
        t0 = &(d->ht[0]);
        m0 = t0->sizemask;//t0的sizemask是3

        /* Emit entries at cursor */
        if (bucketfn) bucketfn(privdata, &t0->table[v & m0]);
        de = t0->table[v & m0];
        while (de) {
            next = de->next;
            fn(privdata, de);
            de = next;
        }

        /* Set unmasked bits so incrementing the reversed cursor
         * operates on the masked bits */
        v |= ~m0;//顺序是0 2 1 3

        /* Increment the reverse cursor */
        v = rev(v);
        v++;
        v = rev(v);

    } else {
        t0 = &d->ht[0];
        t1 = &d->ht[1];

        /* Make sure t0 is the smaller and t1 is the bigger table */
        if (t0->size > t1->size) {
            t0 = &d->ht[1];
            t1 = &d->ht[0];
        }

        m0 = t0->sizemask;//t0的sizemask是3:11b
        m1 = t1->sizemask;//t1的sizemask是7:111b

        /* Emit entries at cursor */
        if (bucketfn) bucketfn(privdata, &t0->table[v & m0]);
        de = t0->table[v & m0];
        while (de) {
            next = de->next;
            fn(privdata, de);
            de = next;
        }

        /* Iterate over indices in larger table that are the expansion
         * of the index pointed to by the cursor in the smaller table */
        do {
            /* Emit entries at cursor */
            if (bucketfn) bucketfn(privdata, &t1->table[v & m1]);
            de = t1->table[v & m1];
            while (de) {
                next = de->next;
                fn(privdata, de);
                de = next;
            }

            /* Increment the reverse cursor not covered by the smaller mask.*/
            v |= ~m1;//顺序是04 26 15 37
            v = rev(v);
            v++;
            v = rev(v);

            /* Continue while bits covered by mask difference is non-zero */
        } while (v & (m0 ^ m1));
    }

    dictResumeRehashing(d);

    return v;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85